Использование энергии солнца на Земле
- Рубрика: Презентации / Презентации по Физике
- Просмотров: 254
Презентация "Использование энергии солнца на Земле" онлайн бесплатно на сайте электронных школьных учебников edulib.ru
Первые опыты использования солнечной энергии В 1600 г. во Франции был создан первый солнечный двигатель, работавший на нагретом воздухе и использовавшийся для перекачки воды.
В конце XVII в. ведущий французский химик А. Лавуазье создал первую солнечную печь, в которой достигалась температура в 1650 оС и нагревались образцы исследуемых материалов в вакууме и защитной атмосфере, а также были изучены свойства углерода и платины.
В 1866 г. француз А. Мушо построил в Алжире несколько крупных солнечных концентраторов и использовал их для дистилляции воды и приводов насосов.
На всемирной выставке в Париже в 1878 г. А. Мушо продемонстрировал солнечную печь для приготовления пищи, в которой 0,5 кг мяса можно было сварить за 20 минут.
В 1833 г. в США Дж. Эриксон построил солнечный воздушный двигатель с параболоцилиндрическим концентратором размером 4,8* 3,3 м. Первый плоский коллектор солнечной энергии был построен французом Ш.А. Тельером. Он имел площадь 20 м 2 и использовался в тепловом двигателе, работавшем на аммиаке.
В 1885г. была предложена схема солнечной установки с плоским коллектором для подачи воды, причем он был смонтирован на крыше пристройки к дому. Первая крупномасштабная установка для дистилляции воды была построена в Чили в 1871 г. американским инженером Ч. Уилсоном. Она эксплуатировалась в течение 30 лет, поставляя питьевую воду для рудника.
В 1890 г. профессор В.К. Церасский в Москве осуществил процесс плавления металлов солнечной энергией, сфокусированной параболоидным зеркалом, в фокусе которого температура превышала 3000 оС.
Башенные и модульные электростанции В настоящее время строятся солнечные электростанции в основном двух типов: СЭС башенного типа и СЭС распределенного типа. 1 — прозрачная оболочка, 2 — поглощающая оболочка, 3 — паропровод, 4 — трубопровод с водяными насосами, 5 — паровая турбина, 6 — конденсатор, 7 — линия электропередачи
В башенных СЭС используется центральный приемник с полем гелиостатов, обеспечивающим степень концентрации в несколько тысяч. Система слежения за Солнцем значительно сложна, так как требуется вращение вокруг двух осей. Управление системой осуществляется с помощью ЭВМ. Главным недостатком башенных СЭС являются их высокая стоимость и большая занимаемая площадь.
В СЭС распределительного (модульного) типа используется большое число модулей, каждый из которых включает параболо-цилиндрический концентратор солнечного излучения и приемник, расположенный в фокусе концентратора и используемый для нагрева рабочей жидкости, подаваемой в тепловой двигатель, который соединен с электрогенератором. При небольшой мощности СЭС модульного типа более экономичны чем башенные. В СЭС модульного типа обычно используются линейные концентраторы солнечной энергии с максимальной степенью концентрации около 100.
Солнечные батареи Энергия солнечной радиации может быть преобразована в постоянный электрический ток посредством солнечных батарей - устройств, состоящих из тонких пленок кремния или других полупроводниковых материалов. Преимущество фотоэлектрических преобразователей (ФЭП) обусловлено отсутствием подвижных частей, их высокой надежностью и стабильностью. При этом срок их службы практически не ограничен. Они имеют малую массу, отличаются простотой обслуживания, эффективным использованием как прямой, так и рассеянной солнечной радиации. Недостатком ФЭП является высокая стоимость и низкий КПД.
Фотоэлектрический эффект возникает в солнечном элементе при его освещении светом в видимой и ближней инфракрасной областях спектра. В солнечном элементе из полупроводникового кремния толщиной 50мкм поглощаются фотоны, и их энергия преобразуется в электрическую посредством p-n соединения.
Солнечные батареи пока используются в основном в космосе, а на Земле только для энергоснабжения автономных потребителей мощностью до 1 кВт, питания радионавигационной и маломощной радиоэлектронной аппаратуры, привода экспериментальных электромобилей и самолетов. В ряде стран разрабатываются гелиоэнергитические установки с использованием так называемых солнечных прудов.
Солнечные коллекторы и аккумуляторы теплоты Основным конструктивным элементом солнечной установки является коллектор, в котором происходит улавливание солнечной энергии, ее преобразование в теплоту и нагрев воды, воздуха или какого либо другого теплоносителя. Различают два типа солнечных коллекторов - плоские и фокусирующие.
В плоских коллекторах солнечная энергия поглощается без концентрации, а в фокусирующих - с концентрацией, т.е. с увеличением плотности поступающего потока радиации.
Аккумуляторы можно классифицировать по характеристике физико-химических процессов, протекающих в теплоаккумулирующих материалах (ТАМ): Аккумуляторы емкостного типа, в которых используется теплоемкость нагреваемого (охлаждаемого) аккумулирующего материала без изменения его агрегатного состояния (природный камень, галька, вода, водные растворы солей и др.); Аккумуляторы фазового перехода вещества, в которых используется теплота плавления (затвердевая) вещества; Аккумуляторы энергии, основанные на выделении и поглощении теплоты при обратимых химических и фотохимических реакциях.
Солнечные водонагревательные установки Солнечные водонагревательные установки получили довольно широкое распространение благодаря простоте их конструкции, надежности, быстрой окупаемости. По принципу работы солнечные водонагревательные установки можно разделить на два типа: установки с естественной и принудительной циркуляцией теплоносителя. В последние годы все больше производится пассивных водонагревателей, которые работают без насоса, а следовательно, не потребляют электроэнергию. Они проще в конструктивном отношении, надежнее в эксплуатации, почти не требуют ухода, а по своей эффективности практически не уступают солнечным водонагревательным установкам с принудительной циркуляцией.
Солнечная водонагревательная установка с естественной циркуляцией содержит коллектор солнечной энергии, бак-аккумулятора подводится холодная вола (ХВ), и из его верхней части отводится потребителям горячая вода (ГВ). Перечисленные элементы образуют контур естественной циркуляции воды. По подъемной трубе горячая вода из коллектора солнечной энергии поступает а бак-аккумулятор, а по отпускной трубе из бака в коллектор поступает более холодная вода для нагрева за счет поглощенной солнечной энергии. Поскольку средняя температура воды в подъемной трубе выше, чем в отпускной, плотность воды, напротив, ниже во второй трубе. И вследствие этого возникает разность давлений (Па), вызывающая движение воды в контуре циркуляции.
Система солнечного теплоснабжения зданий Различают активные и пассивные системы солнечного теплоснабжения зданий. Характерным признаком активных систем является наличие коллектора солнечной энергии, аккумулятора теплоты, дополнительного источника энергии, трубопроводов, теплообменников, насосов или вентиляторов и устройств для автоматического контроля и управления. В пассивных системах роль солнечного коллектора и аккумулятора теплоты обычно выполняют сами ограждающие конструкции здания, а движение теплоносителя (воздуха) осуществляется за счет естественной конверции без применения вентилятора.
Пример активной солнечной системы теплоснабжения 1 – солнечный коллектор; 2 – бак-аккумулятор; 3 – насос; 4 – электроподогреватель Пример активной солнечной системы теплоснабжения 1 – солнечный коллектор; 2 – бак-аккумулятор; 3 – насос; 4 – электроподогреватель