Золотое сечение в геометрии

Золотое сечение в геометрии - Скачать Читать Лучшую Школьную Библиотеку Учебников
Смотреть онлайн
Поделиться с друзьями:
Золотое сечение в геометрии:
Презентация на тему Золотое сечение в геометрии к уроку по геометрии

Презентация "Золотое сечение в геометрии" онлайн бесплатно на сайте электронных школьных учебников edulib.ru

Золотое сечение в геометрии
1 слайд

Золотое сечение в геометрии

Правило Золотого Сечения впервые сформулировано Евклидом. Вкратце оно определяется так: отношение це
2 слайд

Правило Золотого Сечения впервые сформулировано Евклидом. Вкратце оно определяется так: отношение целого к большей части должно равняться отношению большей части к меньшей. Таким образом, по Платону, достигается ощущение "наиболее совершенного единого целого". Проблему гармонии на Земле и во Вселенной принято считать вечной. Древние мыслители сводили цель науки к поиску объективной гармонии. В понятие гармонии Пифагор (580-500 гг. до нашей эры) включали симметрию и отношения целого и его частей - "золотое сечение"

Важно отметить два вида проявлений Золотого Сечения в живой природе: 1. иррациональные отношения по
3 слайд

Важно отметить два вида проявлений Золотого Сечения в живой природе: 1. иррациональные отношения по Пифагору - 1.62 2. целочисленные, дискретные - по Фибоначчи.

Одна из задач Фибоначчи гласила «Сколько пар кроликов в один год от одной пары родится». Размышляя н
4 слайд

Одна из задач Фибоначчи гласила «Сколько пар кроликов в один год от одной пары родится». Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 и так далее. Для того, чтобы получить каждое следующее число в этом ряду, надо сложить два предыдущих: 1+1=2, 1+2=3, 2+3=5, 3+5=8, 5+8=13 и так далее. 

Пифагор был первым, кто обратил внимание на особое «гармоничное» деление любого отрезка, позднее наз
5 слайд

Пифагор был первым, кто обратил внимание на особое «гармоничное» деление любого отрезка, позднее названное «золотым сечением». Приближенные значения таковы: 1,61803398875

Пропорции различных частей нашего тела составляют число, очень близкое к золотому сечению. Если эти
6 слайд

Пропорции различных частей нашего тела составляют число, очень близкое к золотому сечению. Если эти пропорции совпадают с формулой золотого сечения, то внешность или тело человека считается идеально сложенными. Если принять центром человеческого тела точку пупа, а расстояние между ступней человека и точкой пупа за единицу измерения, то рост человека эквивалентен числу 1.618.

Изучая конструкции раковин, ученые обратили внимание на то, что форма раковин поражает своим соверше
7 слайд

Изучая конструкции раковин, ученые обратили внимание на то, что форма раковин поражает своим совершенством и экономичностью средств, затраченных на ее создание. Идея спирали в раковинах выражена не приближенно, а в совершенной геометрической форме, в удивительно красивой, "отточенной" конструкции  У большинства улиток, которые обладают раковинами, раковина растет в форме спирали, которая точно соответствует "золотой пропорции"

Золотое сечение присутствует в строении всех кристаллов, но большинство кристаллов микроскопически м
8 слайд

Золотое сечение присутствует в строении всех кристаллов, но большинство кристаллов микроскопически малы, так что мы не можем разглядеть их невооруженным глазом.  Однако снежинки, также представляющие собой водные кристаллы, вполне доступны нашему взору. 

Портрет Моны Лизы (Джоконда) привлекает тем, что композиция рисунка построена на "золотых треуг
9 слайд

Портрет Моны Лизы (Джоконда) привлекает тем, что композиция рисунка построена на "золотых треугольниках».  Таким образом, Леонардо Да Винчи использовал в своей картине не только принцип симметрии, но и Золотое сечение

Интересные сведения о периодах жизни человека, связанные с числами Фибоначчи. Критические возрасты м
10 слайд

Интересные сведения о периодах жизни человека, связанные с числами Фибоначчи. Критические возрасты мужчин соответствуют следующим годам: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,… Периодичность в жизни женщины подчиняется ряду Люка: 1, 3, 4, 7, 11, 18, 29, 47, 76, 123. Сдвижка возрастных интервалов объясняется более ранним развитием девочек.

В фотографии используется упрощенный вариант построения «Золотого сечения» или правило «Трети». Закл
11 слайд

В фотографии используется упрощенный вариант построения «Золотого сечения» или правило «Трети». Заключается оно в следующем: мы мысленно делим кадр на три части по горизонтали и вертикали и, в точках пересечения воображаемых линий, размещаем ключевые детали снимаемой сцены.

Знаменитый русский архитектор М.Ф.Казаков широко использовал в своем творчестве золотое сечение. Его
12 слайд

Знаменитый русский архитектор М.Ф.Казаков широко использовал в своем творчестве золотое сечение. Его талант был многогранным, но в большей степени он проявился в многочисленных проектах жилых домов и усадеб. Например, золотое сечение можно встретить в архитектуре здания бывшего сената в Кремле, Дворца в Петровском Алабине и Голицынской больницы в Москве

С помощью правильных пропорций можно получать гармоничные образы, скорректировать недостатки фигуры,
13 слайд

С помощью правильных пропорций можно получать гармоничные образы, скорректировать недостатки фигуры, а это важно в профессии закройщика.

Таким образом всё в нашем мире без исключения подчиняется закону золотого сечения и это всегда было
14 слайд

Таким образом всё в нашем мире без исключения подчиняется закону золотого сечения и это всегда было есть и будет.

Отзывы на edulib.ru"Золотое сечение в геометрии" (0)
Оставить отзыв
Прокомментировать