Задачи на построение сечений
- Рубрика: Презентации / Презентации по Геометрии
- Просмотров: 379
Презентация "Задачи на построение сечений" онлайн бесплатно на сайте электронных школьных учебников edulib.ru
Цель работы: Развитие пространственных представлений. Задачи: Познакомить с правилами построения сечений. Выработать навыки построения сечений тетраэдра и параллелепипеда при различных случаях задания секущей плоскости. Сформировать умение применять правила построения сечений при решении задач по темам «Многогранники».
Для решения многих геометрических задач необходимо строить сечения многогранников различными плоскостями.
Понятие секущей плоскости Секущей плоскостью параллелепипеда (тетраэдра) называется любая плоскость, по обе стороны от которой имеются точки данного параллелепипеда (тетраэдра).
Понятие сечения многогранника Многоугольник, сторонами которого являются данные отрезки, называется сечением тетраэдра (параллелепипеда). Секущая плоскость пересекает грани тетраэдра (параллелепипеда) по отрезкам.
Работа по рисункам Сколько плоскостей можно провести через выделенные элементы? Какие аксиомы и теоремы вы применяли?
Для построения сечения нужно построить точки пересечения секущей плоскости с ребрами и соединить их отрезками.
Правила построения сечений 1. Соединять можно только две точки, лежащие в плоскости одной грани. 2. Секущая плоскость пересекает параллельные грани по параллельным отрезкам.
Правила построения сечений 3. Если в плоскости грани отмечена только одна точка, принадлежащая плоскости сечения, то надо построить дополнительную точку. Для этого необходимо найти точки пересечения уже построенных прямых с другими прямыми, лежащими в тех же гранях.
Построить сечение тетраэдра DABC плоскостью, проходящей через точки M,N,K Проведем прямую через точки М и К, т.к. они лежат в одной грани (АDC). 2. Проведем прямую через точки К и N, т.к. они лежат в одной грани (СDB). 3. Аналогично рассуждая, проводим прямую MN. 4. Треугольник MNK – искомое сечение.
Построить сечение тетраэдра плоскостью, проходящей через точку М параллельно АВС. Проведем через точку М прямую параллельную ребру AB 2. Проведем через точку М прямую параллельную ребру AC 3. Проведем прямую через точки K и P, т.к. они лежат в одной грани (DBC) 4. Треугольник MPK – искомое сечение.
Построить сечение тетраэдра плоскостью, проходящей через точки E, F, K. E F K L A B C D M 1. Проводим КF. 2. Проводим FE. 3. Продолжим EF, продол- жим AC. 5. Проводим MK. 7. Проводим EL EFKL – искомое сечение
Построить сечение тетраэдра плоскостью, проходящей через точки E, F, K E F K L A B C M D Какие точки можно сразу соединить? С какой точкой, лежащей в той же грани можно соединить полученную дополнительную точку? Какие прямые можно продолжить, чтобы получить дополнительную точку? F и K, Е и К ЕК и АС С точкой F Соедините получившиеся точки, лежащие в одной грани, назовите сечение. ЕLFK
Построить сечение параллелепипеда плоскостью проходящей через точку Х параллельно плоскости (ОСВ) 2. Через точку X прямую параллельную ребру D1D 1. Проведем через точку X прямую параллельную ребру D1C1 3. Через точку Z прямую параллельную ребру DC 4. Проведем прямую через точки S и Y, т.к. они лежат в одной грани (BB1C1) XYSZ – искомое сечение
A1 А В В1 С С1 D D1 Построить сечение параллелепипеда плоскостью, проходящей через точки M,A,D М 1. AD 2. MD 3. ME//AD, т.к. (ABC)//(A1B1C1) 4. AE 5. AEMD – искомое сечение E
Выполните задания самостоятельно Д м к т м к т Постройте сечение: а) параллелепипеда; б) тетраэдра плоскостью, проходящей через точки М, Т, К.
Использованные ресурсы Соболева Л. И. Построение сечений Ткачева В. В. Построение сечений тетраэдра и параллелепипеда Гобозова Л. В. Задачи на построение сечений DVD-диск. Уроки геометрии Кирилла и Мефодия. 10 класс, 2005 Обучающие и проверочные задания. Геометрия. 10 класс (Тетрадь)/Алешина Т.Н. – М.: Интеллект-Центр, 1998