Поговорим о многогранниках
- Рубрика: Презентации / Презентации по Геометрии
- Просмотров: 350
Презентация "Поговорим о многогранниках" онлайн бесплатно на сайте электронных школьных учебников edulib.ru
Поговорим о многогранниках Выполнила Малашина Ольга Владимировна, учитель математики МОУ СОШ с. Липовка
Ни одни геометрические тела не обладают таким совершенством и красотой , как правильные многогранники. "Правильных многогранников вызывающе мало, -написал когда-то Л.Кэролл, - но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".
Правильные многогранники Еще в древней Греции были известны пять удивительных многогранников.
Их изучали ученые, ювелиры, священники, архитекторы. Этим многогранникам даже приписывали магические свойства. Древнегреческий ученый и философ Платон (IV–V в до н. э.) считал, что эти тела олицетворяют сущность природы. В своем диалоге «Тимей» Платон говорит, что атом огня имеет вид тетраэдра, земли – гексаэдра (куба), воздуха – октаэдра, воды – икосаэдра. В этом соответствии не нашлось места только додекаэдру и Платон предположил существование еще одной, пятой сущности – эфира, атомы которого как раз и имеют форму додекаэдра. Ученики Платона продолжили его дело в изучении перечисленных тел. Поэтому эти многогранники называют платоновыми телами
Тетраэдр Тетраэдр (tetra – четыре, hedra – грань). Правильный тетраэдр – правильный четырехгранник, то есть тетраэдр с равными ребрами, представляет собой правильный многогранник, все грани которого – правильные треугольники и из каждой вершины которого выходит ровно три ребра. Очевидно, что тетраэдр с заданной длиной ребра единственен. Все остальные тетраэдры подобны ему и определяются длиной ребра/
Гексаэдр Гексаэдр (куб, hexa – шесть). Гексаэдр – правильный многогранник, все грани которого – квадраты, и из каждой вершины выходит три ребра.
Октаэдр Октаэдр (okto – восемь). Это правильный многогранник, все грани которого – правильные треугольники и к каждой вершине прилегают четыре грани
Додекаэдр Существует правильный многогранник, у которого все грани правильные пятиугольники и из каждой вершины выходит 3 ребра. Этот многогранник имеет 12 граней, 30 ребер и 20 вершин и называется додекаэдром (dodeka – двенадцать).
Икосаэдр Существует правильный многогранник, у которого все грани – правильные треугольники, и из каждой вершины выходит 5 ребер. Этот многогранник имеет 20 граней, 30 ребер, 12 вершин и называется икосаэдром (icosi – двадцать).
Определение: Полуправильным называется выпуклый многогранник, гранями которого являются правильные многоугольники (возможно с разным числом сторон), причем в каждой вершине сходится одинаковое число граней.
Кубооктаэдр Этот полуправильный многогранник получается, если провести в кубе отсекающие плоскости через середины ребер, выходящих из одной вершины. Его гранями являются шесть квадратов, как у куба, и восемь правильных треугольников, как у октаэдра. Отсюда и его название.
Усеченный куб Если указанным способом срезать вершины куба, то получится полуправильный многогранник, который и называется усеченным кубом
Тела Кеплера- Пуансо Кроме правильных и полуправильных многогранников красивые формы имеют так называемые звездчатые многогранники. Правильных звездчатых многогранников всего четыре. Первые два открыты И. Кеплером, а два других почти 200 лет спустя построил Л. Пуансо.
Примечание: Из тетраэдра, куба и октаэдра звездчатые многогранники не получаются. Из додекаэдра получается три. Икосаэдр имеет одну звездчатую форму – большой икосаэдр.
Это интересно Звездчатые многогранники очень декоративны, что позволяет широко применять их при изготовлении всевозможных украшений. Применяются они и в архитектуре. Многие формы звездчатых многогранников подсказывает сама природа. Снежинки – это звездчатые многогранники.