Матрицы и действия с ними
- Рубрика: Презентации / Презентации по Математике
- Просмотров: 326
Презентация "Матрицы и действия с ними" онлайн бесплатно на сайте электронных школьных учебников edulib.ru
Тема 1. «Матрицы и действия над ними» Основные понятия: Определение матрицы Виды матриц Действия над матрицами
1. Определение матрицы Прямоугольная таблица чисел вида называется матрицей. - элементы матрицы. Размер матрицы Главная диагональ матрицы Побочная диагональ матрицы
2. Виды матриц Прямоугольная Квадратная Нулевая Единичная Диагональная Симметричная Вырожденная Равные Треугольная Квазитреугольная (ступенчатая или трапециевидная) Матрица-строка или строчная матрица Матрица-столбец или столбцевая матриц
Матрица называется прямоугольной, если количество ее строк не совпадает с количеством столбцов: Матрица называется квадратной, если количество ее строк совпадает с количеством столбцов:
Матрица называется нулевой, если все ее элементы нулевые : Квадратная матрица называется единичной, если элементы по главной диагонали единицы, а остальные элементы нулевые :
Квадратная матрица называется диагональной, если элементы по главной диагонали отличны от нуля, а остальные элементы нулевые: Квадратная матрица называется симметричной, если относительно главной диагонали для всех ее элементов выполняется условие :
Квадратная матрица называется вырожденной, если ее определитель равен нулю. Матрицы А и В (одинаковых размерностей) называются равными, если :
Матрица, состоящая из одной строки называется матрицей-строкой или строчной матрицей. Матрица, состоящая из одного столбца называется матрицей-столбцом или столбцевой матрицей
Суммой (разностью) двух матриц одинаковой размерности называется матрица, элементы которой равны сумме (разности) соответствующих элементов матриц слагаемых. Например: Пример
Произведением матрицы на число называется матрица, полученная из данной умножением всех ее элементов на число. Например: Пример
Матрица, полученная из данной заменой каждой ее строки столбцом с тем же номером, называется матрицей, транспонированной относительно данной. Например: Свойства
Умножение матриц определяется для согласованных матриц. Произведением матрицы на матрицу называется матрица , для которой , т.е. каждый элемент матрицы С равен сумме произведений элементов i-й строки матрицы А на соответствующие элементы j-го столбца матрицы В.