Школьные учебники / Презентации по предметам » Презентации » Другие презентации » Презентация по математике "Наименьшее общее кратное" (5 класс)

Презентация по математике "Наименьшее общее кратное" (5 класс)

Презентация по математике "Наименьшее общее кратное" (5 класс) - Скачать Читать Лучшую Школьную Библиотеку Учебников
Смотреть онлайн
Поделиться с друзьями:
Презентация по математике "Наименьшее общее кратное" (5 класс):
Cкачать презентацию: Презентация по математике "Наименьшее общее кратное" (5 класс)

Презентация "Презентация по математике "Наименьшее общее кратное" (5 класс)" онлайн бесплатно на сайте электронных школьных учебников edulib.ru

Наименьшее общее кратное<br> (НОК)<br><br>Учебная презентация по математике, 5 класс<br>Гладышева Ол
1 слайд

Наименьшее общее кратное
(НОК)

Учебная презентация по математике, 5 класс
Гладышева Олеся Александровна
г. Вилючинск, СОШ № 2

Повторение<br>Разложите на множители число 720<br><br>720 = 2·2·2·2·3·3·5 = 24·32·5<br>
2 слайд

Повторение
Разложите на множители число 720

720 = 2·2·2·2·3·3·5 = 24·32·5

Найдите делители каждого <br>из чисел 24 и 60<br>Д (24): 1, 2, 3, 4, 6, 8, 12, 24. <br><br>Д (60): 1
3 слайд

Найдите делители каждого
из чисел 24 и 60
Д (24): 1, 2, 3, 4, 6, 8, 12, 24.

Д (60): 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60.

Найдите общие делители чисел 24 и 60
Д (24): 1, 2, 3, 4, 6, 8, 12, 24.

Д (60): 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60.

Какой делитель является наибольшим?<br>Д (24): 1,  2,  3,  4,  6, 8, 12,  24. <br><br>Д (60): 1,  2,
4 слайд

Какой делитель является наибольшим?
Д (24): 1, 2, 3, 4, 6, 8, 12, 24.

Д (60): 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60.

Наибольшим общим делителем (НОД) чисел a и b называется наибольшее число, на которое одновременно делятся без остатка числа a и b

Как найти НОД <br>Разложить числа на простые множители<br><br>Среди множителей, входящих в разложени
5 слайд

Как найти НОД
Разложить числа на простые множители

Среди множителей, входящих в разложение этих чисел, выделить совпадающие множители

Найти произведение этих множителей

Пример<br>Найти НОД чисел 24 и 60<br>НОД (24,60)=<br><br>2·2·3 = 12<br><br>
6 слайд

Пример
Найти НОД чисел 24 и 60
НОД (24,60)=

2·2·3 = 12

Взаимно простые числа<br>Числа, наибольший общий делитель которых равен 1, называют взаимно простыми
7 слайд

Взаимно простые числа
Числа, наибольший общий делитель которых равен 1, называют взаимно простыми
Два простых числа всегда являются взаимно простыми
Например, числа 6 и 8 являются взаимно простыми, так как НОД(6;8) = 1

Наименьшее <br>общее кратное<br>(НОК)<br>
8 слайд

Наименьшее
общее кратное
(НОК)

Найдите кратные каждого <br>из чисел 2 и 3<br>К (2): 2, 4, 6, 8, 10, 12, 14, 16, 18, … <br><br>К (3)
9 слайд

Найдите кратные каждого
из чисел 2 и 3
К (2): 2, 4, 6, 8, 10, 12, 14, 16, 18, …

К (3): 3, 6, 9, 12, 15, 18, 21, …
Найдите общие кратные чисел 2 и 3
К (2): 2, 4, 6, 8, 10, 12, 14, 16, 18, …

К (3): 3, 6, 9, 12, 15, 18, 21, …

Какое кратное является наименьшим?<br>Наименьшее общее кратное (НОК) чисел a и b – это наименьшее чи
10 слайд

Какое кратное является наименьшим?
Наименьшее общее кратное (НОК) чисел a и b – это наименьшее число, которое кратно a и b
К (2): 2, 4, 6, 8, 10, 12, 14, 16, 18, …

К (3): 3, 6, 9, 12, 15, 18, 21, …

Как найти НОК <br>Разложить числа на простые множители<br><br>Выписать множители, входящие в разложе
11 слайд

Как найти НОК
Разложить числа на простые множители

Выписать множители, входящие в разложение одного из чисел

Дополнить разложение теми множителями из разложения других чисел, которые не вошли в выписанное разложение

Найти произведение получившихся множителей

Пример<br>Найти НОК чисел 60 и 75<br>НОК (60,75)=<br><br>2·2·3·5·5 = 300<br><br>
12 слайд

Пример
Найти НОК чисел 60 и 75
НОК (60,75)=

2·2·3·5·5 = 300

Отзывы на edulib.ru"Презентация по математике "Наименьшее общее кратное" (5 класс)" (0)
Оставить отзыв
Прокомментировать